zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
zeros: empty set
cons: {1}
0: empty set
U11: {1}
tt: empty set
s: {1}
length: {1}
U21: {1}
nil: empty set
U31: {1}
take: {1, 2}
and: {1}
isNat: empty set
isNatList: empty set
isNatIList: empty set
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
zeros: empty set
cons: {1}
0: empty set
U11: {1}
tt: empty set
s: {1}
length: {1}
U21: {1}
nil: empty set
U31: {1}
take: {1, 2}
and: {1}
isNat: empty set
isNatList: empty set
isNatIList: empty set
Using Improved CS-DPs we result in the following initial Q-CSDP problem.
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
U111(tt, L) → LENGTH(L)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(V) → ISNATLIST(V)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
ISNATILIST(cons(V1, V2)) → ISNAT(V1)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNATLIST(take(V1, V2)) → AND(isNat(V1), isNatIList(V2))
ISNATLIST(take(V1, V2)) → ISNAT(V1)
LENGTH(cons(N, L)) → U111(and(isNatList(L), isNat(N)), L)
LENGTH(cons(N, L)) → AND(isNatList(L), isNat(N))
LENGTH(cons(N, L)) → ISNATLIST(L)
TAKE(0, IL) → U211(isNatIList(IL))
TAKE(0, IL) → ISNATILIST(IL)
TAKE(s(M), cons(N, IL)) → U311(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
TAKE(s(M), cons(N, IL)) → AND(isNatIList(IL), and(isNat(M), isNat(N)))
TAKE(s(M), cons(N, IL)) → ISNATILIST(IL)
U111(tt, L) → L
U311(tt, IL, M, N) → N
AND(tt, X) → X
zeros
take(M, IL)
isNatIList(V2)
isNatList(V2)
take on positions {1, 2}
and on positions {1}
U111(tt, L) → U(L)
U311(tt, IL, M, N) → U(N)
AND(tt, X) → U(X)
U(take(x_0, x_1)) → U(x_0)
U(take(x_0, x_1)) → U(x_1)
U(and(x_0, x_1)) → U(x_0)
U(zeros) → ZEROS
U(take(M, IL)) → TAKE(M, IL)
U(isNatIList(V2)) → ISNATILIST(V2)
U(isNatList(V2)) → ISNATLIST(V2)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
AND(tt, X) → U(X)
U(take(x_0, x_1)) → U(x_0)
U(take(x_0, x_1)) → U(x_1)
U(and(x_0, x_1)) → U(x_0)
U(take(M, IL)) → TAKE(M, IL)
TAKE(0, IL) → ISNATILIST(IL)
ISNATILIST(V) → ISNATLIST(V)
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNATLIST(take(V1, V2)) → AND(isNat(V1), isNatIList(V2))
ISNATLIST(take(V1, V2)) → ISNAT(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
ISNATILIST(cons(V1, V2)) → ISNAT(V1)
TAKE(s(M), cons(N, IL)) → U311(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
U311(tt, IL, M, N) → U(N)
U(isNatIList(V2)) → ISNATILIST(V2)
U(isNatList(V2)) → ISNATLIST(V2)
TAKE(s(M), cons(N, IL)) → AND(isNatIList(IL), and(isNat(M), isNat(N)))
TAKE(s(M), cons(N, IL)) → ISNATILIST(IL)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
POL(0) = 0
POL(AND(x1, x2)) = x2
POL(ISNAT(x1)) = 0
POL(ISNATILIST(x1)) = 0
POL(ISNATLIST(x1)) = 0
POL(TAKE(x1, x2)) = 2·x2
POL(U(x1)) = x1
POL(U11(x1, x2)) = 2·x1
POL(U21(x1)) = 1 + 2·x1
POL(U31(x1, x2, x3, x4)) = 2 + x3 + 2·x4
POL(U311(x1, x2, x3, x4)) = 1 + x4
POL(and(x1, x2)) = 2·x1 + x2
POL(cons(x1, x2)) = 2 + x1
POL(isNat(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatList(x1)) = 0
POL(length(x1)) = 0
POL(nil) = 0
POL(s(x1)) = 2·x1
POL(take(x1, x2)) = 1 + 2·x1 + 2·x2
POL(tt) = 0
POL(zeros) = 2
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
U11(tt, L) → s(length(L))
and(tt, X) → X
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
U21(tt) → nil
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
zeros → cons(0, zeros)
U31(tt, IL, M, N) → cons(N, take(M, IL))
U(take(x_0, x_1)) → U(x_0)
U(take(x_0, x_1)) → U(x_1)
U(take(M, IL)) → TAKE(M, IL)
TAKE(s(M), cons(N, IL)) → U311(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
U311(tt, IL, M, N) → U(N)
TAKE(s(M), cons(N, IL)) → AND(isNatIList(IL), and(isNat(M), isNat(N)))
TAKE(s(M), cons(N, IL)) → ISNATILIST(IL)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
AND(tt, X) → U(X)
U(and(x_0, x_1)) → U(x_0)
TAKE(0, IL) → ISNATILIST(IL)
ISNATILIST(V) → ISNATLIST(V)
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNATLIST(take(V1, V2)) → AND(isNat(V1), isNatIList(V2))
ISNATLIST(take(V1, V2)) → ISNAT(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
ISNATILIST(cons(V1, V2)) → ISNAT(V1)
U(isNatIList(V2)) → ISNATILIST(V2)
U(isNatList(V2)) → ISNATLIST(V2)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
AND(tt, X) → U(X)
U(and(x_0, x_1)) → U(x_0)
TAKE(0, IL) → ISNATILIST(IL)
ISNATILIST(V) → ISNATLIST(V)
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNATLIST(take(V1, V2)) → AND(isNat(V1), isNatIList(V2))
ISNATLIST(take(V1, V2)) → ISNAT(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
ISNATILIST(cons(V1, V2)) → ISNAT(V1)
U(isNatIList(V2)) → ISNATILIST(V2)
U(isNatList(V2)) → ISNATLIST(V2)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
AND(tt, X) → U(X)
U(and(x_0, x_1)) → U(x_0)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATILIST(V) → ISNATLIST(V)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNATLIST(take(V1, V2)) → AND(isNat(V1), isNatIList(V2))
ISNATLIST(take(V1, V2)) → ISNAT(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
ISNATILIST(cons(V1, V2)) → ISNAT(V1)
U(isNatList(V2)) → ISNATLIST(V2)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
POL(0) = 0
POL(AND(x1, x2)) = 2·x1 + 2·x2
POL(ISNAT(x1)) = x1
POL(ISNATILIST(x1)) = 2·x1
POL(ISNATLIST(x1)) = 2·x1
POL(U(x1)) = 2·x1
POL(U11(x1, x2)) = 2·x2
POL(U21(x1)) = 2 + x1
POL(U31(x1, x2, x3, x4)) = 2 + x2 + x3 + x4
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2·x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 2 + x1 + x2
POL(tt) = 0
POL(zeros) = 0
and(tt, X) → X
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
U11(tt, L) → s(length(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
zeros → cons(0, zeros)
ISNATLIST(take(V1, V2)) → AND(isNat(V1), isNatIList(V2))
ISNATLIST(take(V1, V2)) → ISNAT(V1)
AND(tt, X) → U(X)
U(and(x_0, x_1)) → U(x_0)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATILIST(V) → ISNATLIST(V)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
ISNATILIST(cons(V1, V2)) → ISNAT(V1)
U(isNatList(V2)) → ISNATLIST(V2)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
AND(tt, X) → U(X)
U(and(x_0, x_1)) → U(x_0)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATILIST(V) → ISNATLIST(V)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
ISNATILIST(cons(V1, V2)) → ISNAT(V1)
U(isNatList(V2)) → ISNATLIST(V2)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
POL(0) = 0
POL(AND(x1, x2)) = x2
POL(ISNAT(x1)) = x1
POL(ISNATILIST(x1)) = 2 + 2·x1
POL(ISNATLIST(x1)) = 2·x1
POL(U(x1)) = x1
POL(U11(x1, x2)) = 2·x2
POL(U21(x1)) = 1
POL(U31(x1, x2, x3, x4)) = 1 + x2 + 2·x3 + 2·x4
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = 2 + 2·x1
POL(isNatList(x1)) = 2·x1
POL(length(x1)) = 2·x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + 2·x1 + x2
POL(tt) = 0
POL(zeros) = 0
and(tt, X) → X
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
U11(tt, L) → s(length(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
zeros → cons(0, zeros)
ISNATILIST(V) → ISNATLIST(V)
ISNATILIST(cons(V1, V2)) → ISNAT(V1)
AND(tt, X) → U(X)
U(and(x_0, x_1)) → U(x_0)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
U(isNatList(V2)) → ISNATLIST(V2)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
AND(tt, X) → U(X)
U(and(x_0, x_1)) → U(x_0)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
U(isNatList(V2)) → ISNATLIST(V2)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
POL(0) = 0
POL(AND(x1, x2)) = x2
POL(ISNAT(x1)) = x1
POL(ISNATILIST(x1)) = x1
POL(ISNATLIST(x1)) = x1
POL(U(x1)) = x1
POL(U11(x1, x2)) = 1 + x2
POL(U21(x1)) = x1
POL(U31(x1, x2, x3, x4)) = x2 + x3 + x4
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 1 + x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x1 + x2
POL(tt) = 0
POL(zeros) = 0
and(tt, X) → X
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
U11(tt, L) → s(length(L))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
zeros → cons(0, zeros)
ISNAT(length(V1)) → ISNATLIST(V1)
AND(tt, X) → U(X)
U(and(x_0, x_1)) → U(x_0)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
U(isNatList(V2)) → ISNATLIST(V2)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
AND(tt, X) → U(X)
U(and(x_0, x_1)) → U(x_0)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
U(isNatList(V2)) → ISNATLIST(V2)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
ISNAT(s(V1)) → ISNAT(V1)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ISNAT(s(V1)) → ISNAT(V1)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPSubtermProof
↳ QCSDP
↳ PIsEmptyProof
↳ QCSDP
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPNarrowingProcessor
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
U(and(x_0, x_1)) → U(x_0)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
AND(tt, X) → U(X)
U(isNatList(V2)) → ISNATLIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
ISNATILIST(cons(length(x0), y1)) → AND(isNatList(x0), isNatIList(y1))
ISNATILIST(cons(s(x0), y1)) → AND(isNat(x0), isNatIList(y1))
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPNarrowingProcessor
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
U(and(x_0, x_1)) → U(x_0)
ISNATILIST(cons(s(x0), y1)) → AND(isNat(x0), isNatIList(y1))
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
U(isNatList(V2)) → ISNATLIST(V2)
AND(tt, X) → U(X)
ISNATILIST(cons(length(x0), y1)) → AND(isNatList(x0), isNatIList(y1))
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
POL(0) = 0
POL(AND(x1, x2)) = 2·x2
POL(ISNATILIST(x1)) = 2·x1
POL(ISNATLIST(x1)) = 2·x1
POL(U(x1)) = 2·x1
POL(U11(x1, x2)) = 2 + x2
POL(U21(x1)) = 0
POL(U31(x1, x2, x3, x4)) = x2 + x3 + 2·x4
POL(and(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2 + x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x1 + x2
POL(tt) = 0
POL(zeros) = 0
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
U11(tt, L) → s(length(L))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
U21(tt) → nil
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
zeros → cons(0, zeros)
U31(tt, IL, M, N) → cons(N, take(M, IL))
ISNATILIST(cons(length(x0), y1)) → AND(isNatList(x0), isNatIList(y1))
U(and(x_0, x_1)) → U(x_0)
ISNATILIST(cons(s(x0), y1)) → AND(isNat(x0), isNatIList(y1))
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
U(isNatList(V2)) → ISNATLIST(V2)
AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPNarrowingProcessor
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPNarrowingProcessor
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
U(and(x_0, x_1)) → U(x_0)
ISNATILIST(cons(s(x0), y1)) → AND(isNat(x0), isNatIList(y1))
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
U(isNatList(V2)) → ISNATLIST(V2)
AND(tt, X) → U(X)
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
ISNATILIST(cons(s(0), y1)) → AND(tt, isNatIList(y1))
ISNATILIST(cons(s(length(x0)), y1)) → AND(isNatList(x0), isNatIList(y1))
ISNATILIST(cons(s(s(x0)), y1)) → AND(isNat(x0), isNatIList(y1))
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPNarrowingProcessor
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPNarrowingProcessor
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
U(and(x_0, x_1)) → U(x_0)
ISNATILIST(cons(s(length(x0)), y1)) → AND(isNatList(x0), isNatIList(y1))
U(isNatList(V2)) → ISNATLIST(V2)
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
AND(tt, X) → U(X)
ISNATILIST(cons(s(s(x0)), y1)) → AND(isNat(x0), isNatIList(y1))
ISNATILIST(cons(s(0), y1)) → AND(tt, isNatIList(y1))
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
POL(0) = 0
POL(AND(x1, x2)) = 2·x2
POL(ISNATILIST(x1)) = 2·x1
POL(ISNATLIST(x1)) = 2·x1
POL(U(x1)) = 2·x1
POL(U11(x1, x2)) = 2 + 2·x2
POL(U21(x1)) = 0
POL(U31(x1, x2, x3, x4)) = x2 + 2·x3 + 2·x4
POL(and(x1, x2)) = 2·x1 + x2
POL(cons(x1, x2)) = 2·x1 + x2
POL(isNat(x1)) = x1
POL(isNatIList(x1)) = x1
POL(isNatList(x1)) = x1
POL(length(x1)) = 2 + 2·x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 2·x1 + x2
POL(tt) = 0
POL(zeros) = 0
and(tt, X) → X
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
U11(tt, L) → s(length(L))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
U21(tt) → nil
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
zeros → cons(0, zeros)
U31(tt, IL, M, N) → cons(N, take(M, IL))
ISNATILIST(cons(s(length(x0)), y1)) → AND(isNatList(x0), isNatIList(y1))
U(and(x_0, x_1)) → U(x_0)
U(isNatList(V2)) → ISNATLIST(V2)
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
AND(tt, X) → U(X)
ISNATILIST(cons(s(s(x0)), y1)) → AND(isNat(x0), isNatIList(y1))
ISNATILIST(cons(s(0), y1)) → AND(tt, isNatIList(y1))
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ QCSDPNarrowingProcessor
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDPNarrowingProcessor
↳ QCSDP
↳ QCSDPReductionPairProof
↳ QCSDP
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
U(and(x_0, x_1)) → U(x_0)
U(isNatList(V2)) → ISNATLIST(V2)
ISNATILIST(cons(0, y1)) → AND(tt, isNatIList(y1))
AND(tt, X) → U(X)
ISNATILIST(cons(s(s(x0)), y1)) → AND(isNat(x0), isNatIList(y1))
ISNATILIST(cons(s(0), y1)) → AND(tt, isNatIList(y1))
U(isNatIList(V2)) → ISNATILIST(V2)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ QCSDP
↳ QCSDependencyGraphProof
↳ AND
↳ QCSDP
↳ QCSDP
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
LENGTH(cons(N, L)) → U111(and(isNatList(L), isNat(N)), L)
U111(tt, L) → LENGTH(L)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ Trivial-Transformation
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U21(x1)) → U21Active(mark(x1))
U21Active(x1) → U21(x1)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
U21Active(tt) → nil
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
takeActive(0, IL) → U21Active(isNatIListActive(IL))
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
TAKEACTIVE(s(M), cons(N, IL)) → ISNATILISTACTIVE(IL)
TAKEACTIVE(s(M), cons(N, IL)) → U31ACTIVE(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
MARK(take(x1, x2)) → MARK(x2)
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(U11(x1, x2)) → MARK(x1)
MARK(s(x1)) → MARK(x1)
U11ACTIVE(tt, L) → LENGTHACTIVE(mark(L))
MARK(cons(x1, x2)) → MARK(x1)
MARK(zeros) → ZEROSACTIVE
U11ACTIVE(tt, L) → MARK(L)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), x2)
MARK(length(x1)) → MARK(x1)
ANDACTIVE(tt, X) → MARK(X)
MARK(U31(x1, x2, x3, x4)) → U31ACTIVE(mark(x1), x2, x3, x4)
TAKEACTIVE(s(M), cons(N, IL)) → ANDACTIVE(isNatIListActive(IL), and(isNat(M), isNat(N)))
TAKEACTIVE(0, IL) → U21ACTIVE(isNatIListActive(IL))
MARK(and(x1, x2)) → MARK(x1)
LENGTHACTIVE(cons(N, L)) → U11ACTIVE(andActive(isNatListActive(L), isNat(N)), L)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(take(x1, x2)) → MARK(x1)
MARK(U31(x1, x2, x3, x4)) → MARK(x1)
ISNATILISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatIList(V2))
MARK(isNat(x1)) → ISNATACTIVE(x1)
ISNATACTIVE(length(V1)) → ISNATLISTACTIVE(V1)
MARK(U11(x1, x2)) → U11ACTIVE(mark(x1), x2)
ISNATLISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatList(V2))
ISNATACTIVE(s(V1)) → ISNATACTIVE(V1)
MARK(take(x1, x2)) → TAKEACTIVE(mark(x1), mark(x2))
MARK(U21(x1)) → MARK(x1)
MARK(U21(x1)) → U21ACTIVE(mark(x1))
ISNATILISTACTIVE(V) → ISNATLISTACTIVE(V)
ISNATLISTACTIVE(take(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatIList(V2))
LENGTHACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
TAKEACTIVE(0, IL) → ISNATILISTACTIVE(IL)
ISNATLISTACTIVE(take(V1, V2)) → ISNATACTIVE(V1)
ISNATLISTACTIVE(cons(V1, V2)) → ISNATACTIVE(V1)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(isNatListActive(L), isNat(N))
ISNATILISTACTIVE(cons(V1, V2)) → ISNATACTIVE(V1)
U31ACTIVE(tt, IL, M, N) → MARK(N)
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U21(x1)) → U21Active(mark(x1))
U21Active(x1) → U21(x1)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
U21Active(tt) → nil
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
takeActive(0, IL) → U21Active(isNatIListActive(IL))
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ Trivial-Transformation
TAKEACTIVE(s(M), cons(N, IL)) → ISNATILISTACTIVE(IL)
TAKEACTIVE(s(M), cons(N, IL)) → U31ACTIVE(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
MARK(take(x1, x2)) → MARK(x2)
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(U11(x1, x2)) → MARK(x1)
MARK(s(x1)) → MARK(x1)
U11ACTIVE(tt, L) → LENGTHACTIVE(mark(L))
MARK(cons(x1, x2)) → MARK(x1)
MARK(zeros) → ZEROSACTIVE
U11ACTIVE(tt, L) → MARK(L)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), x2)
MARK(length(x1)) → MARK(x1)
ANDACTIVE(tt, X) → MARK(X)
MARK(U31(x1, x2, x3, x4)) → U31ACTIVE(mark(x1), x2, x3, x4)
TAKEACTIVE(s(M), cons(N, IL)) → ANDACTIVE(isNatIListActive(IL), and(isNat(M), isNat(N)))
TAKEACTIVE(0, IL) → U21ACTIVE(isNatIListActive(IL))
MARK(and(x1, x2)) → MARK(x1)
LENGTHACTIVE(cons(N, L)) → U11ACTIVE(andActive(isNatListActive(L), isNat(N)), L)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(take(x1, x2)) → MARK(x1)
MARK(U31(x1, x2, x3, x4)) → MARK(x1)
ISNATILISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatIList(V2))
MARK(isNat(x1)) → ISNATACTIVE(x1)
ISNATACTIVE(length(V1)) → ISNATLISTACTIVE(V1)
MARK(U11(x1, x2)) → U11ACTIVE(mark(x1), x2)
ISNATLISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatList(V2))
ISNATACTIVE(s(V1)) → ISNATACTIVE(V1)
MARK(take(x1, x2)) → TAKEACTIVE(mark(x1), mark(x2))
MARK(U21(x1)) → MARK(x1)
MARK(U21(x1)) → U21ACTIVE(mark(x1))
ISNATILISTACTIVE(V) → ISNATLISTACTIVE(V)
ISNATLISTACTIVE(take(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatIList(V2))
LENGTHACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
TAKEACTIVE(0, IL) → ISNATILISTACTIVE(IL)
ISNATLISTACTIVE(take(V1, V2)) → ISNATACTIVE(V1)
ISNATLISTACTIVE(cons(V1, V2)) → ISNATACTIVE(V1)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(isNatListActive(L), isNat(N))
ISNATILISTACTIVE(cons(V1, V2)) → ISNATACTIVE(V1)
U31ACTIVE(tt, IL, M, N) → MARK(N)
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U21(x1)) → U21Active(mark(x1))
U21Active(x1) → U21(x1)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
U21Active(tt) → nil
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
takeActive(0, IL) → U21Active(isNatIListActive(IL))
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ Trivial-Transformation
TAKEACTIVE(s(M), cons(N, IL)) → ISNATILISTACTIVE(IL)
MARK(take(x1, x2)) → MARK(x2)
TAKEACTIVE(s(M), cons(N, IL)) → U31ACTIVE(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(U11(x1, x2)) → MARK(x1)
MARK(s(x1)) → MARK(x1)
U11ACTIVE(tt, L) → LENGTHACTIVE(mark(L))
MARK(cons(x1, x2)) → MARK(x1)
U11ACTIVE(tt, L) → MARK(L)
MARK(length(x1)) → MARK(x1)
ANDACTIVE(tt, X) → MARK(X)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), x2)
MARK(U31(x1, x2, x3, x4)) → U31ACTIVE(mark(x1), x2, x3, x4)
TAKEACTIVE(s(M), cons(N, IL)) → ANDACTIVE(isNatIListActive(IL), and(isNat(M), isNat(N)))
MARK(and(x1, x2)) → MARK(x1)
LENGTHACTIVE(cons(N, L)) → U11ACTIVE(andActive(isNatListActive(L), isNat(N)), L)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
MARK(take(x1, x2)) → MARK(x1)
MARK(U31(x1, x2, x3, x4)) → MARK(x1)
ISNATILISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatIList(V2))
MARK(isNat(x1)) → ISNATACTIVE(x1)
ISNATACTIVE(length(V1)) → ISNATLISTACTIVE(V1)
MARK(U11(x1, x2)) → U11ACTIVE(mark(x1), x2)
ISNATLISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatList(V2))
ISNATACTIVE(s(V1)) → ISNATACTIVE(V1)
MARK(take(x1, x2)) → TAKEACTIVE(mark(x1), mark(x2))
MARK(U21(x1)) → MARK(x1)
ISNATILISTACTIVE(V) → ISNATLISTACTIVE(V)
ISNATLISTACTIVE(take(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatIList(V2))
LENGTHACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
TAKEACTIVE(0, IL) → ISNATILISTACTIVE(IL)
ISNATLISTACTIVE(cons(V1, V2)) → ISNATACTIVE(V1)
ISNATLISTACTIVE(take(V1, V2)) → ISNATACTIVE(V1)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(isNatListActive(L), isNat(N))
ISNATILISTACTIVE(cons(V1, V2)) → ISNATACTIVE(V1)
U31ACTIVE(tt, IL, M, N) → MARK(N)
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U21(x1)) → U21Active(mark(x1))
U21Active(x1) → U21(x1)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
U21Active(tt) → nil
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
takeActive(0, IL) → U21Active(isNatIListActive(IL))
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(take(x1, x2)) → MARK(x2)
MARK(length(x1)) → LENGTHACTIVE(mark(x1))
MARK(U11(x1, x2)) → MARK(x1)
MARK(length(x1)) → MARK(x1)
MARK(U31(x1, x2, x3, x4)) → U31ACTIVE(mark(x1), x2, x3, x4)
MARK(take(x1, x2)) → MARK(x1)
MARK(U31(x1, x2, x3, x4)) → MARK(x1)
MARK(U11(x1, x2)) → U11ACTIVE(mark(x1), x2)
MARK(take(x1, x2)) → TAKEACTIVE(mark(x1), mark(x2))
MARK(U21(x1)) → MARK(x1)
Used ordering: Polynomial interpretation [25]:
TAKEACTIVE(s(M), cons(N, IL)) → ISNATILISTACTIVE(IL)
TAKEACTIVE(s(M), cons(N, IL)) → U31ACTIVE(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
U11ACTIVE(tt, L) → LENGTHACTIVE(mark(L))
MARK(cons(x1, x2)) → MARK(x1)
U11ACTIVE(tt, L) → MARK(L)
ANDACTIVE(tt, X) → MARK(X)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), x2)
TAKEACTIVE(s(M), cons(N, IL)) → ANDACTIVE(isNatIListActive(IL), and(isNat(M), isNat(N)))
MARK(and(x1, x2)) → MARK(x1)
LENGTHACTIVE(cons(N, L)) → U11ACTIVE(andActive(isNatListActive(L), isNat(N)), L)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATILISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatIList(V2))
MARK(isNat(x1)) → ISNATACTIVE(x1)
ISNATACTIVE(length(V1)) → ISNATLISTACTIVE(V1)
ISNATLISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatList(V2))
ISNATACTIVE(s(V1)) → ISNATACTIVE(V1)
ISNATILISTACTIVE(V) → ISNATLISTACTIVE(V)
ISNATLISTACTIVE(take(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatIList(V2))
LENGTHACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
TAKEACTIVE(0, IL) → ISNATILISTACTIVE(IL)
ISNATLISTACTIVE(cons(V1, V2)) → ISNATACTIVE(V1)
ISNATLISTACTIVE(take(V1, V2)) → ISNATACTIVE(V1)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(isNatListActive(L), isNat(N))
ISNATILISTACTIVE(cons(V1, V2)) → ISNATACTIVE(V1)
U31ACTIVE(tt, IL, M, N) → MARK(N)
POL(0) = 0
POL(ANDACTIVE(x1, x2)) = 1 + x2
POL(ISNATACTIVE(x1)) = 1
POL(ISNATILISTACTIVE(x1)) = 1
POL(ISNATLISTACTIVE(x1)) = 1
POL(LENGTHACTIVE(x1)) = 1 + x1
POL(MARK(x1)) = 1 + x1
POL(TAKEACTIVE(x1, x2)) = 1 + x2
POL(U11(x1, x2)) = 1 + x1 + x2
POL(U11ACTIVE(x1, x2)) = 1 + x2
POL(U11Active(x1, x2)) = 1 + x1 + x2
POL(U21(x1)) = 1 + x1
POL(U21Active(x1)) = 1 + x1
POL(U31(x1, x2, x3, x4)) = 1 + x1 + x2 + x3 + x4
POL(U31ACTIVE(x1, x2, x3, x4)) = 1 + x4
POL(U31Active(x1, x2, x3, x4)) = 1 + x1 + x2 + x3 + x4
POL(and(x1, x2)) = x1 + x2
POL(andActive(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = x1 + x2
POL(isNat(x1)) = 0
POL(isNatActive(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatIListActive(x1)) = 0
POL(isNatList(x1)) = 0
POL(isNatListActive(x1)) = 0
POL(length(x1)) = 1 + x1
POL(lengthActive(x1)) = 1 + x1
POL(mark(x1)) = x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 1 + x1 + x2
POL(takeActive(x1, x2)) = 1 + x1 + x2
POL(tt) = 0
POL(zeros) = 0
POL(zerosActive) = 0
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
isNatActive(length(V1)) → isNatListActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
mark(isNatList(x1)) → isNatListActive(x1)
mark(and(x1, x2)) → andActive(mark(x1), x2)
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
mark(isNat(x1)) → isNatActive(x1)
andActive(tt, X) → mark(X)
isNatActive(s(V1)) → isNatActive(V1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatIListActive(V) → isNatListActive(V)
lengthActive(x1) → length(x1)
andActive(x1, x2) → and(x1, x2)
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
isNatActive(x1) → isNat(x1)
mark(U21(x1)) → U21Active(mark(x1))
U21Active(x1) → U21(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
mark(zeros) → zerosActive
zerosActive → cons(0, zeros)
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
isNatActive(0) → tt
U21Active(tt) → nil
U11Active(tt, L) → s(lengthActive(mark(L)))
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
lengthActive(nil) → 0
takeActive(0, IL) → U21Active(isNatIListActive(IL))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
isNatIListActive(zeros) → tt
isNatListActive(nil) → tt
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ Trivial-Transformation
TAKEACTIVE(s(M), cons(N, IL)) → ISNATILISTACTIVE(IL)
TAKEACTIVE(s(M), cons(N, IL)) → U31ACTIVE(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
U11ACTIVE(tt, L) → LENGTHACTIVE(mark(L))
MARK(cons(x1, x2)) → MARK(x1)
U11ACTIVE(tt, L) → MARK(L)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), x2)
ANDACTIVE(tt, X) → MARK(X)
TAKEACTIVE(s(M), cons(N, IL)) → ANDACTIVE(isNatIListActive(IL), and(isNat(M), isNat(N)))
MARK(and(x1, x2)) → MARK(x1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
LENGTHACTIVE(cons(N, L)) → U11ACTIVE(andActive(isNatListActive(L), isNat(N)), L)
ISNATILISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatIList(V2))
MARK(isNat(x1)) → ISNATACTIVE(x1)
ISNATACTIVE(length(V1)) → ISNATLISTACTIVE(V1)
ISNATLISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatList(V2))
ISNATACTIVE(s(V1)) → ISNATACTIVE(V1)
ISNATILISTACTIVE(V) → ISNATLISTACTIVE(V)
ISNATLISTACTIVE(take(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatIList(V2))
LENGTHACTIVE(cons(N, L)) → ISNATLISTACTIVE(L)
TAKEACTIVE(0, IL) → ISNATILISTACTIVE(IL)
ISNATLISTACTIVE(cons(V1, V2)) → ISNATACTIVE(V1)
ISNATLISTACTIVE(take(V1, V2)) → ISNATACTIVE(V1)
ISNATILISTACTIVE(cons(V1, V2)) → ISNATACTIVE(V1)
LENGTHACTIVE(cons(N, L)) → ANDACTIVE(isNatListActive(L), isNat(N))
U31ACTIVE(tt, IL, M, N) → MARK(N)
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U21(x1)) → U21Active(mark(x1))
U21Active(x1) → U21(x1)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
U21Active(tt) → nil
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
takeActive(0, IL) → U21Active(isNatIListActive(IL))
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Trivial-Transformation
ISNATACTIVE(length(V1)) → ISNATLISTACTIVE(V1)
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
MARK(s(x1)) → MARK(x1)
ISNATLISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatList(V2))
ISNATACTIVE(s(V1)) → ISNATACTIVE(V1)
MARK(cons(x1, x2)) → MARK(x1)
ISNATILISTACTIVE(V) → ISNATLISTACTIVE(V)
ANDACTIVE(tt, X) → MARK(X)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), x2)
ISNATLISTACTIVE(take(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatIList(V2))
MARK(and(x1, x2)) → MARK(x1)
ISNATLISTACTIVE(cons(V1, V2)) → ISNATACTIVE(V1)
ISNATLISTACTIVE(take(V1, V2)) → ISNATACTIVE(V1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATILISTACTIVE(cons(V1, V2)) → ISNATACTIVE(V1)
ISNATILISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatIList(V2))
MARK(isNat(x1)) → ISNATACTIVE(x1)
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U21(x1)) → U21Active(mark(x1))
U21Active(x1) → U21(x1)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
U21Active(tt) → nil
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
takeActive(0, IL) → U21Active(isNatIListActive(IL))
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
ISNATACTIVE(length(V1)) → ISNATLISTACTIVE(V1)
MARK(s(x1)) → MARK(x1)
ISNATACTIVE(s(V1)) → ISNATACTIVE(V1)
MARK(cons(x1, x2)) → MARK(x1)
MARK(and(x1, x2)) → ANDACTIVE(mark(x1), x2)
ISNATLISTACTIVE(take(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatIList(V2))
MARK(and(x1, x2)) → MARK(x1)
ISNATLISTACTIVE(cons(V1, V2)) → ISNATACTIVE(V1)
ISNATLISTACTIVE(take(V1, V2)) → ISNATACTIVE(V1)
MARK(isNatList(x1)) → ISNATLISTACTIVE(x1)
ISNATILISTACTIVE(cons(V1, V2)) → ISNATACTIVE(V1)
ISNATILISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatIList(V2))
MARK(isNat(x1)) → ISNATACTIVE(x1)
Used ordering: Polynomial interpretation [25]:
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
ISNATLISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatList(V2))
ISNATILISTACTIVE(V) → ISNATLISTACTIVE(V)
ANDACTIVE(tt, X) → MARK(X)
POL(0) = 0
POL(ANDACTIVE(x1, x2)) = 1 + x2
POL(ISNATACTIVE(x1)) = 1 + x1
POL(ISNATILISTACTIVE(x1)) = 1 + x1
POL(ISNATLISTACTIVE(x1)) = 1 + x1
POL(MARK(x1)) = 1 + x1
POL(U11(x1, x2)) = 0
POL(U11Active(x1, x2)) = 0
POL(U21(x1)) = 0
POL(U21Active(x1)) = 0
POL(U31(x1, x2, x3, x4)) = 0
POL(U31Active(x1, x2, x3, x4)) = 0
POL(and(x1, x2)) = 1 + x1 + x2
POL(andActive(x1, x2)) = 0
POL(cons(x1, x2)) = 1 + x1 + x2
POL(isNat(x1)) = 1 + x1
POL(isNatActive(x1)) = 0
POL(isNatIList(x1)) = x1
POL(isNatIListActive(x1)) = 0
POL(isNatList(x1)) = 1 + x1
POL(isNatListActive(x1)) = 0
POL(length(x1)) = 1 + x1
POL(lengthActive(x1)) = 0
POL(mark(x1)) = 0
POL(nil) = 0
POL(s(x1)) = 1 + x1
POL(take(x1, x2)) = 1 + x1 + x2
POL(takeActive(x1, x2)) = 0
POL(tt) = 0
POL(zeros) = 0
POL(zerosActive) = 0
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Trivial-Transformation
ISNATILISTACTIVE(V) → ISNATLISTACTIVE(V)
ANDACTIVE(tt, X) → MARK(X)
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
ISNATLISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatList(V2))
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U21(x1)) → U21Active(mark(x1))
U21Active(x1) → U21(x1)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
U21Active(tt) → nil
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
takeActive(0, IL) → U21Active(isNatIListActive(IL))
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
MARK(isNatIList(x1)) → ISNATILISTACTIVE(x1)
ISNATLISTACTIVE(cons(V1, V2)) → ANDACTIVE(isNatActive(V1), isNatList(V2))
Used ordering: Polynomial interpretation [25]:
ISNATILISTACTIVE(V) → ISNATLISTACTIVE(V)
ANDACTIVE(tt, X) → MARK(X)
POL(0) = 0
POL(ANDACTIVE(x1, x2)) = 1 + x2
POL(ISNATILISTACTIVE(x1)) = 1 + x1
POL(ISNATLISTACTIVE(x1)) = 1 + x1
POL(MARK(x1)) = 1 + x1
POL(U11(x1, x2)) = 0
POL(U11Active(x1, x2)) = 0
POL(U21(x1)) = 0
POL(U21Active(x1)) = 0
POL(U31(x1, x2, x3, x4)) = 0
POL(U31Active(x1, x2, x3, x4)) = 0
POL(and(x1, x2)) = 0
POL(andActive(x1, x2)) = 0
POL(cons(x1, x2)) = 1 + x1 + x2
POL(isNat(x1)) = 0
POL(isNatActive(x1)) = 0
POL(isNatIList(x1)) = 1 + x1
POL(isNatIListActive(x1)) = 0
POL(isNatList(x1)) = 0
POL(isNatListActive(x1)) = 0
POL(length(x1)) = 0
POL(lengthActive(x1)) = 0
POL(mark(x1)) = 0
POL(nil) = 0
POL(s(x1)) = 0
POL(take(x1, x2)) = 0
POL(takeActive(x1, x2)) = 0
POL(tt) = 0
POL(zeros) = 0
POL(zerosActive) = 0
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Trivial-Transformation
ISNATILISTACTIVE(V) → ISNATLISTACTIVE(V)
ANDACTIVE(tt, X) → MARK(X)
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U21(x1)) → U21Active(mark(x1))
U21Active(x1) → U21(x1)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
U21Active(tt) → nil
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
takeActive(0, IL) → U21Active(isNatIListActive(IL))
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ Trivial-Transformation
LENGTHACTIVE(cons(N, L)) → U11ACTIVE(andActive(isNatListActive(L), isNat(N)), L)
U11ACTIVE(tt, L) → LENGTHACTIVE(mark(L))
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U21(x1)) → U21Active(mark(x1))
U21Active(x1) → U21(x1)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
U21Active(tt) → nil
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
takeActive(0, IL) → U21Active(isNatIListActive(IL))
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
U11ACTIVE(tt, take(x0, x1)) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))
U11ACTIVE(tt, U31(x0, x1, x2, x3)) → LENGTHACTIVE(U31Active(mark(x0), x1, x2, x3))
U11ACTIVE(tt, zeros) → LENGTHACTIVE(zerosActive)
U11ACTIVE(tt, cons(x0, x1)) → LENGTHACTIVE(cons(mark(x0), x1))
U11ACTIVE(tt, length(x0)) → LENGTHACTIVE(lengthActive(mark(x0)))
U11ACTIVE(tt, and(x0, x1)) → LENGTHACTIVE(andActive(mark(x0), x1))
U11ACTIVE(tt, isNat(x0)) → LENGTHACTIVE(isNatActive(x0))
U11ACTIVE(tt, isNatList(x0)) → LENGTHACTIVE(isNatListActive(x0))
U11ACTIVE(tt, 0) → LENGTHACTIVE(0)
U11ACTIVE(tt, isNatIList(x0)) → LENGTHACTIVE(isNatIListActive(x0))
U11ACTIVE(tt, U11(x0, x1)) → LENGTHACTIVE(U11Active(mark(x0), x1))
U11ACTIVE(tt, nil) → LENGTHACTIVE(nil)
U11ACTIVE(tt, U21(x0)) → LENGTHACTIVE(U21Active(mark(x0)))
U11ACTIVE(tt, tt) → LENGTHACTIVE(tt)
U11ACTIVE(tt, s(x0)) → LENGTHACTIVE(s(mark(x0)))
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ Trivial-Transformation
U11ACTIVE(tt, take(x0, x1)) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))
U11ACTIVE(tt, U31(x0, x1, x2, x3)) → LENGTHACTIVE(U31Active(mark(x0), x1, x2, x3))
U11ACTIVE(tt, zeros) → LENGTHACTIVE(zerosActive)
U11ACTIVE(tt, cons(x0, x1)) → LENGTHACTIVE(cons(mark(x0), x1))
U11ACTIVE(tt, length(x0)) → LENGTHACTIVE(lengthActive(mark(x0)))
U11ACTIVE(tt, and(x0, x1)) → LENGTHACTIVE(andActive(mark(x0), x1))
U11ACTIVE(tt, isNat(x0)) → LENGTHACTIVE(isNatActive(x0))
U11ACTIVE(tt, isNatList(x0)) → LENGTHACTIVE(isNatListActive(x0))
U11ACTIVE(tt, 0) → LENGTHACTIVE(0)
U11ACTIVE(tt, isNatIList(x0)) → LENGTHACTIVE(isNatIListActive(x0))
LENGTHACTIVE(cons(N, L)) → U11ACTIVE(andActive(isNatListActive(L), isNat(N)), L)
U11ACTIVE(tt, U11(x0, x1)) → LENGTHACTIVE(U11Active(mark(x0), x1))
U11ACTIVE(tt, U21(x0)) → LENGTHACTIVE(U21Active(mark(x0)))
U11ACTIVE(tt, nil) → LENGTHACTIVE(nil)
U11ACTIVE(tt, tt) → LENGTHACTIVE(tt)
U11ACTIVE(tt, s(x0)) → LENGTHACTIVE(s(mark(x0)))
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U21(x1)) → U21Active(mark(x1))
U21Active(x1) → U21(x1)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
U21Active(tt) → nil
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
takeActive(0, IL) → U21Active(isNatIListActive(IL))
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ Trivial-Transformation
U11ACTIVE(tt, length(x0)) → LENGTHACTIVE(lengthActive(mark(x0)))
U11ACTIVE(tt, take(x0, x1)) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))
U11ACTIVE(tt, U31(x0, x1, x2, x3)) → LENGTHACTIVE(U31Active(mark(x0), x1, x2, x3))
U11ACTIVE(tt, and(x0, x1)) → LENGTHACTIVE(andActive(mark(x0), x1))
U11ACTIVE(tt, zeros) → LENGTHACTIVE(zerosActive)
U11ACTIVE(tt, isNatList(x0)) → LENGTHACTIVE(isNatListActive(x0))
U11ACTIVE(tt, isNat(x0)) → LENGTHACTIVE(isNatActive(x0))
U11ACTIVE(tt, isNatIList(x0)) → LENGTHACTIVE(isNatIListActive(x0))
LENGTHACTIVE(cons(N, L)) → U11ACTIVE(andActive(isNatListActive(L), isNat(N)), L)
U11ACTIVE(tt, U11(x0, x1)) → LENGTHACTIVE(U11Active(mark(x0), x1))
U11ACTIVE(tt, U21(x0)) → LENGTHACTIVE(U21Active(mark(x0)))
U11ACTIVE(tt, cons(x0, x1)) → LENGTHACTIVE(cons(mark(x0), x1))
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U21(x1)) → U21Active(mark(x1))
U21Active(x1) → U21(x1)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
U21Active(tt) → nil
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
takeActive(0, IL) → U21Active(isNatIListActive(IL))
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
U11ACTIVE(tt, zeros) → LENGTHACTIVE(cons(0, zeros))
U11ACTIVE(tt, zeros) → LENGTHACTIVE(zeros)
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ Trivial-Transformation
U11ACTIVE(tt, take(x0, x1)) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))
U11ACTIVE(tt, U31(x0, x1, x2, x3)) → LENGTHACTIVE(U31Active(mark(x0), x1, x2, x3))
U11ACTIVE(tt, zeros) → LENGTHACTIVE(cons(0, zeros))
U11ACTIVE(tt, cons(x0, x1)) → LENGTHACTIVE(cons(mark(x0), x1))
U11ACTIVE(tt, length(x0)) → LENGTHACTIVE(lengthActive(mark(x0)))
U11ACTIVE(tt, and(x0, x1)) → LENGTHACTIVE(andActive(mark(x0), x1))
U11ACTIVE(tt, isNat(x0)) → LENGTHACTIVE(isNatActive(x0))
U11ACTIVE(tt, isNatList(x0)) → LENGTHACTIVE(isNatListActive(x0))
U11ACTIVE(tt, isNatIList(x0)) → LENGTHACTIVE(isNatIListActive(x0))
LENGTHACTIVE(cons(N, L)) → U11ACTIVE(andActive(isNatListActive(L), isNat(N)), L)
U11ACTIVE(tt, U11(x0, x1)) → LENGTHACTIVE(U11Active(mark(x0), x1))
U11ACTIVE(tt, U21(x0)) → LENGTHACTIVE(U21Active(mark(x0)))
U11ACTIVE(tt, zeros) → LENGTHACTIVE(zeros)
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U21(x1)) → U21Active(mark(x1))
U21Active(x1) → U21(x1)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
U21Active(tt) → nil
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
takeActive(0, IL) → U21Active(isNatIListActive(IL))
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ Trivial-Transformation
U11ACTIVE(tt, length(x0)) → LENGTHACTIVE(lengthActive(mark(x0)))
U11ACTIVE(tt, take(x0, x1)) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))
U11ACTIVE(tt, U31(x0, x1, x2, x3)) → LENGTHACTIVE(U31Active(mark(x0), x1, x2, x3))
U11ACTIVE(tt, and(x0, x1)) → LENGTHACTIVE(andActive(mark(x0), x1))
U11ACTIVE(tt, isNatList(x0)) → LENGTHACTIVE(isNatListActive(x0))
U11ACTIVE(tt, isNat(x0)) → LENGTHACTIVE(isNatActive(x0))
U11ACTIVE(tt, isNatIList(x0)) → LENGTHACTIVE(isNatIListActive(x0))
LENGTHACTIVE(cons(N, L)) → U11ACTIVE(andActive(isNatListActive(L), isNat(N)), L)
U11ACTIVE(tt, U11(x0, x1)) → LENGTHACTIVE(U11Active(mark(x0), x1))
U11ACTIVE(tt, zeros) → LENGTHACTIVE(cons(0, zeros))
U11ACTIVE(tt, U21(x0)) → LENGTHACTIVE(U21Active(mark(x0)))
U11ACTIVE(tt, cons(x0, x1)) → LENGTHACTIVE(cons(mark(x0), x1))
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U21(x1)) → U21Active(mark(x1))
U21Active(x1) → U21(x1)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
U21Active(tt) → nil
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
takeActive(0, IL) → U21Active(isNatIListActive(IL))
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U11ACTIVE(tt, length(x0)) → LENGTHACTIVE(lengthActive(mark(x0)))
U11ACTIVE(tt, U11(x0, x1)) → LENGTHACTIVE(U11Active(mark(x0), x1))
U11ACTIVE(tt, U21(x0)) → LENGTHACTIVE(U21Active(mark(x0)))
Used ordering: Polynomial interpretation [25]:
U11ACTIVE(tt, take(x0, x1)) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))
U11ACTIVE(tt, U31(x0, x1, x2, x3)) → LENGTHACTIVE(U31Active(mark(x0), x1, x2, x3))
U11ACTIVE(tt, and(x0, x1)) → LENGTHACTIVE(andActive(mark(x0), x1))
U11ACTIVE(tt, isNatList(x0)) → LENGTHACTIVE(isNatListActive(x0))
U11ACTIVE(tt, isNat(x0)) → LENGTHACTIVE(isNatActive(x0))
U11ACTIVE(tt, isNatIList(x0)) → LENGTHACTIVE(isNatIListActive(x0))
LENGTHACTIVE(cons(N, L)) → U11ACTIVE(andActive(isNatListActive(L), isNat(N)), L)
U11ACTIVE(tt, zeros) → LENGTHACTIVE(cons(0, zeros))
U11ACTIVE(tt, cons(x0, x1)) → LENGTHACTIVE(cons(mark(x0), x1))
POL(0) = 0
POL(LENGTHACTIVE(x1)) = x1
POL(U11(x1, x2)) = 0
POL(U11ACTIVE(x1, x2)) = x1
POL(U11Active(x1, x2)) = 0
POL(U21(x1)) = 0
POL(U21Active(x1)) = 0
POL(U31(x1, x2, x3, x4)) = 0
POL(U31Active(x1, x2, x3, x4)) = 1
POL(and(x1, x2)) = 0
POL(andActive(x1, x2)) = x1
POL(cons(x1, x2)) = 1
POL(isNat(x1)) = 0
POL(isNatActive(x1)) = 1
POL(isNatIList(x1)) = 0
POL(isNatIListActive(x1)) = 1
POL(isNatList(x1)) = 0
POL(isNatListActive(x1)) = 1
POL(length(x1)) = 0
POL(lengthActive(x1)) = 0
POL(mark(x1)) = 1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = 0
POL(takeActive(x1, x2)) = 1
POL(tt) = 1
POL(zeros) = 0
POL(zerosActive) = 1
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
isNatListActive(x1) → isNatList(x1)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
isNatActive(length(V1)) → isNatListActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
mark(isNatList(x1)) → isNatListActive(x1)
mark(and(x1, x2)) → andActive(mark(x1), x2)
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
mark(isNat(x1)) → isNatActive(x1)
andActive(tt, X) → mark(X)
isNatActive(s(V1)) → isNatActive(V1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatIListActive(V) → isNatListActive(V)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
andActive(x1, x2) → and(x1, x2)
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
isNatActive(x1) → isNat(x1)
mark(U21(x1)) → U21Active(mark(x1))
U21Active(x1) → U21(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(zeros) → zerosActive
mark(nil) → nil
zerosActive → cons(0, zeros)
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
isNatActive(0) → tt
U21Active(tt) → nil
U11Active(tt, L) → s(lengthActive(mark(L)))
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
lengthActive(nil) → 0
takeActive(0, IL) → U21Active(isNatIListActive(IL))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
isNatIListActive(zeros) → tt
isNatListActive(nil) → tt
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ Trivial-Transformation
U11ACTIVE(tt, take(x0, x1)) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))
U11ACTIVE(tt, U31(x0, x1, x2, x3)) → LENGTHACTIVE(U31Active(mark(x0), x1, x2, x3))
U11ACTIVE(tt, and(x0, x1)) → LENGTHACTIVE(andActive(mark(x0), x1))
U11ACTIVE(tt, isNat(x0)) → LENGTHACTIVE(isNatActive(x0))
U11ACTIVE(tt, isNatList(x0)) → LENGTHACTIVE(isNatListActive(x0))
U11ACTIVE(tt, isNatIList(x0)) → LENGTHACTIVE(isNatIListActive(x0))
LENGTHACTIVE(cons(N, L)) → U11ACTIVE(andActive(isNatListActive(L), isNat(N)), L)
U11ACTIVE(tt, cons(x0, x1)) → LENGTHACTIVE(cons(mark(x0), x1))
U11ACTIVE(tt, zeros) → LENGTHACTIVE(cons(0, zeros))
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U21(x1)) → U21Active(mark(x1))
U21Active(x1) → U21(x1)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
U21Active(tt) → nil
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
takeActive(0, IL) → U21Active(isNatIListActive(IL))
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U11ACTIVE(tt, U31(x0, x1, x2, x3)) → LENGTHACTIVE(U31Active(mark(x0), x1, x2, x3))
U11ACTIVE(tt, cons(x0, x1)) → LENGTHACTIVE(cons(mark(x0), x1))
Used ordering: Polynomial interpretation [25]:
U11ACTIVE(tt, take(x0, x1)) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))
U11ACTIVE(tt, and(x0, x1)) → LENGTHACTIVE(andActive(mark(x0), x1))
U11ACTIVE(tt, isNat(x0)) → LENGTHACTIVE(isNatActive(x0))
U11ACTIVE(tt, isNatList(x0)) → LENGTHACTIVE(isNatListActive(x0))
U11ACTIVE(tt, isNatIList(x0)) → LENGTHACTIVE(isNatIListActive(x0))
LENGTHACTIVE(cons(N, L)) → U11ACTIVE(andActive(isNatListActive(L), isNat(N)), L)
U11ACTIVE(tt, zeros) → LENGTHACTIVE(cons(0, zeros))
POL(0) = 0
POL(LENGTHACTIVE(x1)) = x1
POL(U11(x1, x2)) = 0
POL(U11ACTIVE(x1, x2)) = x1 + x2
POL(U11Active(x1, x2)) = 1
POL(U21(x1)) = 0
POL(U21Active(x1)) = 0
POL(U31(x1, x2, x3, x4)) = 1 + x2
POL(U31Active(x1, x2, x3, x4)) = 1 + x2
POL(and(x1, x2)) = x1 + x2
POL(andActive(x1, x2)) = x1 + x2
POL(cons(x1, x2)) = 1 + x2
POL(isNat(x1)) = 0
POL(isNatActive(x1)) = 1
POL(isNatIList(x1)) = 0
POL(isNatIListActive(x1)) = 1
POL(isNatList(x1)) = 0
POL(isNatListActive(x1)) = 1
POL(length(x1)) = 1
POL(lengthActive(x1)) = 1
POL(mark(x1)) = 1 + x1
POL(nil) = 0
POL(s(x1)) = 0
POL(take(x1, x2)) = x2
POL(takeActive(x1, x2)) = x2
POL(tt) = 1
POL(zeros) = 0
POL(zerosActive) = 1
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
isNatListActive(x1) → isNatList(x1)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
isNatActive(length(V1)) → isNatListActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
mark(isNatList(x1)) → isNatListActive(x1)
mark(and(x1, x2)) → andActive(mark(x1), x2)
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
mark(isNat(x1)) → isNatActive(x1)
andActive(tt, X) → mark(X)
isNatActive(s(V1)) → isNatActive(V1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatIListActive(V) → isNatListActive(V)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
andActive(x1, x2) → and(x1, x2)
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
isNatActive(x1) → isNat(x1)
mark(U21(x1)) → U21Active(mark(x1))
isNatIListActive(x1) → isNatIList(x1)
U21Active(x1) → U21(x1)
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(zeros) → zerosActive
mark(nil) → nil
zerosActive → cons(0, zeros)
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
isNatActive(0) → tt
U21Active(tt) → nil
U11Active(tt, L) → s(lengthActive(mark(L)))
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
lengthActive(nil) → 0
takeActive(0, IL) → U21Active(isNatIListActive(IL))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
isNatIListActive(zeros) → tt
isNatListActive(nil) → tt
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ Trivial-Transformation
U11ACTIVE(tt, take(x0, x1)) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))
U11ACTIVE(tt, and(x0, x1)) → LENGTHACTIVE(andActive(mark(x0), x1))
U11ACTIVE(tt, isNatList(x0)) → LENGTHACTIVE(isNatListActive(x0))
U11ACTIVE(tt, isNat(x0)) → LENGTHACTIVE(isNatActive(x0))
U11ACTIVE(tt, isNatIList(x0)) → LENGTHACTIVE(isNatIListActive(x0))
LENGTHACTIVE(cons(N, L)) → U11ACTIVE(andActive(isNatListActive(L), isNat(N)), L)
U11ACTIVE(tt, zeros) → LENGTHACTIVE(cons(0, zeros))
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U21(x1)) → U21Active(mark(x1))
U21Active(x1) → U21(x1)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
U21Active(tt) → nil
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
takeActive(0, IL) → U21Active(isNatIListActive(IL))
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U11ACTIVE(tt, and(x0, x1)) → LENGTHACTIVE(andActive(mark(x0), x1))
Used ordering: Polynomial interpretation [25]:
U11ACTIVE(tt, take(x0, x1)) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))
U11ACTIVE(tt, isNatList(x0)) → LENGTHACTIVE(isNatListActive(x0))
U11ACTIVE(tt, isNat(x0)) → LENGTHACTIVE(isNatActive(x0))
U11ACTIVE(tt, isNatIList(x0)) → LENGTHACTIVE(isNatIListActive(x0))
LENGTHACTIVE(cons(N, L)) → U11ACTIVE(andActive(isNatListActive(L), isNat(N)), L)
U11ACTIVE(tt, zeros) → LENGTHACTIVE(cons(0, zeros))
POL(0) = 0
POL(LENGTHACTIVE(x1)) = x1
POL(U11(x1, x2)) = 0
POL(U11ACTIVE(x1, x2)) = x1 + x2
POL(U11Active(x1, x2)) = 0
POL(U21(x1)) = 0
POL(U21Active(x1)) = 0
POL(U31(x1, x2, x3, x4)) = x2
POL(U31Active(x1, x2, x3, x4)) = 1 + x2
POL(and(x1, x2)) = 1 + x2
POL(andActive(x1, x2)) = 1 + x2
POL(cons(x1, x2)) = 1 + x2
POL(isNat(x1)) = 0
POL(isNatActive(x1)) = 1
POL(isNatIList(x1)) = 0
POL(isNatIListActive(x1)) = 1
POL(isNatList(x1)) = 0
POL(isNatListActive(x1)) = 1
POL(length(x1)) = 0
POL(lengthActive(x1)) = 0
POL(mark(x1)) = 1 + x1
POL(nil) = 0
POL(s(x1)) = x1
POL(take(x1, x2)) = x2
POL(takeActive(x1, x2)) = x2
POL(tt) = 1
POL(zeros) = 0
POL(zerosActive) = 1
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
isNatListActive(x1) → isNatList(x1)
isNatActive(length(V1)) → isNatListActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
mark(isNatList(x1)) → isNatListActive(x1)
mark(and(x1, x2)) → andActive(mark(x1), x2)
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
mark(isNat(x1)) → isNatActive(x1)
andActive(tt, X) → mark(X)
isNatActive(s(V1)) → isNatActive(V1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatIListActive(V) → isNatListActive(V)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
andActive(x1, x2) → and(x1, x2)
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
isNatActive(x1) → isNat(x1)
U11Active(x1, x2) → U11(x1, x2)
mark(U21(x1)) → U21Active(mark(x1))
isNatIListActive(x1) → isNatIList(x1)
U21Active(x1) → U21(x1)
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(zeros) → zerosActive
mark(nil) → nil
zerosActive → cons(0, zeros)
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
isNatActive(0) → tt
U21Active(tt) → nil
U11Active(tt, L) → s(lengthActive(mark(L)))
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
lengthActive(nil) → 0
takeActive(0, IL) → U21Active(isNatIListActive(IL))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
isNatIListActive(zeros) → tt
isNatListActive(nil) → tt
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ Trivial-Transformation
U11ACTIVE(tt, take(x0, x1)) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))
U11ACTIVE(tt, isNat(x0)) → LENGTHACTIVE(isNatActive(x0))
U11ACTIVE(tt, isNatList(x0)) → LENGTHACTIVE(isNatListActive(x0))
U11ACTIVE(tt, isNatIList(x0)) → LENGTHACTIVE(isNatIListActive(x0))
LENGTHACTIVE(cons(N, L)) → U11ACTIVE(andActive(isNatListActive(L), isNat(N)), L)
U11ACTIVE(tt, zeros) → LENGTHACTIVE(cons(0, zeros))
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U21(x1)) → U21Active(mark(x1))
U21Active(x1) → U21(x1)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
U21Active(tt) → nil
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
takeActive(0, IL) → U21Active(isNatIListActive(IL))
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
U11ACTIVE(tt, isNat(x0)) → LENGTHACTIVE(isNatActive(x0))
U11ACTIVE(tt, isNatList(x0)) → LENGTHACTIVE(isNatListActive(x0))
U11ACTIVE(tt, isNatIList(x0)) → LENGTHACTIVE(isNatIListActive(x0))
Used ordering: Polynomial interpretation [25]:
U11ACTIVE(tt, take(x0, x1)) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))
LENGTHACTIVE(cons(N, L)) → U11ACTIVE(andActive(isNatListActive(L), isNat(N)), L)
U11ACTIVE(tt, zeros) → LENGTHACTIVE(cons(0, zeros))
POL(0) = 0
POL(LENGTHACTIVE(x1)) = x1
POL(U11(x1, x2)) = 0
POL(U11ACTIVE(x1, x2)) = 1
POL(U11Active(x1, x2)) = 0
POL(U21(x1)) = 1
POL(U21Active(x1)) = 1
POL(U31(x1, x2, x3, x4)) = 1
POL(U31Active(x1, x2, x3, x4)) = 1
POL(and(x1, x2)) = x2
POL(andActive(x1, x2)) = x2
POL(cons(x1, x2)) = 1
POL(isNat(x1)) = 0
POL(isNatActive(x1)) = 0
POL(isNatIList(x1)) = 0
POL(isNatIListActive(x1)) = 0
POL(isNatList(x1)) = 0
POL(isNatListActive(x1)) = 0
POL(length(x1)) = 0
POL(lengthActive(x1)) = 0
POL(mark(x1)) = x1
POL(nil) = 1
POL(s(x1)) = 0
POL(take(x1, x2)) = 1
POL(takeActive(x1, x2)) = 1
POL(tt) = 0
POL(zeros) = 1
POL(zerosActive) = 1
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
isNatActive(length(V1)) → isNatListActive(V1)
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
mark(isNatList(x1)) → isNatListActive(x1)
mark(and(x1, x2)) → andActive(mark(x1), x2)
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
mark(isNat(x1)) → isNatActive(x1)
andActive(tt, X) → mark(X)
isNatActive(s(V1)) → isNatActive(V1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatIListActive(V) → isNatListActive(V)
lengthActive(x1) → length(x1)
andActive(x1, x2) → and(x1, x2)
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
isNatActive(x1) → isNat(x1)
U11Active(x1, x2) → U11(x1, x2)
mark(U21(x1)) → U21Active(mark(x1))
isNatIListActive(x1) → isNatIList(x1)
U21Active(x1) → U21(x1)
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(zeros) → zerosActive
mark(nil) → nil
zerosActive → cons(0, zeros)
zerosActive → zeros
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
isNatActive(0) → tt
U21Active(tt) → nil
U11Active(tt, L) → s(lengthActive(mark(L)))
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
lengthActive(nil) → 0
takeActive(0, IL) → U21Active(isNatIListActive(IL))
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
isNatIListActive(zeros) → tt
isNatListActive(nil) → tt
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ Narrowing
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ Trivial-Transformation
U11ACTIVE(tt, take(x0, x1)) → LENGTHACTIVE(takeActive(mark(x0), mark(x1)))
LENGTHACTIVE(cons(N, L)) → U11ACTIVE(andActive(isNatListActive(L), isNat(N)), L)
U11ACTIVE(tt, zeros) → LENGTHACTIVE(cons(0, zeros))
mark(zeros) → zerosActive
zerosActive → zeros
mark(U11(x1, x2)) → U11Active(mark(x1), x2)
U11Active(x1, x2) → U11(x1, x2)
mark(U21(x1)) → U21Active(mark(x1))
U21Active(x1) → U21(x1)
mark(U31(x1, x2, x3, x4)) → U31Active(mark(x1), x2, x3, x4)
U31Active(x1, x2, x3, x4) → U31(x1, x2, x3, x4)
mark(and(x1, x2)) → andActive(mark(x1), x2)
andActive(x1, x2) → and(x1, x2)
mark(isNat(x1)) → isNatActive(x1)
isNatActive(x1) → isNat(x1)
mark(isNatIList(x1)) → isNatIListActive(x1)
isNatIListActive(x1) → isNatIList(x1)
mark(isNatList(x1)) → isNatListActive(x1)
isNatListActive(x1) → isNatList(x1)
mark(length(x1)) → lengthActive(mark(x1))
lengthActive(x1) → length(x1)
mark(take(x1, x2)) → takeActive(mark(x1), mark(x2))
takeActive(x1, x2) → take(x1, x2)
mark(cons(x1, x2)) → cons(mark(x1), x2)
mark(0) → 0
mark(tt) → tt
mark(s(x1)) → s(mark(x1))
mark(nil) → nil
zerosActive → cons(0, zeros)
U11Active(tt, L) → s(lengthActive(mark(L)))
U21Active(tt) → nil
U31Active(tt, IL, M, N) → cons(mark(N), take(M, IL))
andActive(tt, X) → mark(X)
isNatActive(0) → tt
isNatActive(length(V1)) → isNatListActive(V1)
isNatActive(s(V1)) → isNatActive(V1)
isNatIListActive(V) → isNatListActive(V)
isNatIListActive(zeros) → tt
isNatIListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
isNatListActive(nil) → tt
isNatListActive(cons(V1, V2)) → andActive(isNatActive(V1), isNatList(V2))
isNatListActive(take(V1, V2)) → andActive(isNatActive(V1), isNatIList(V2))
lengthActive(nil) → 0
lengthActive(cons(N, L)) → U11Active(andActive(isNatListActive(L), isNat(N)), L)
takeActive(0, IL) → U21Active(isNatIListActive(IL))
takeActive(s(M), cons(N, IL)) → U31Active(andActive(isNatIListActive(IL), and(isNat(M), isNat(N))), IL, M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ DependencyPairsProof
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
ISNATLIST(take(V1, V2)) → ISNAT(V1)
ZEROS → ZEROS
TAKE(s(M), cons(N, IL)) → ISNATILIST(IL)
LENGTH(cons(N, L)) → ISNATLIST(L)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
TAKE(s(M), cons(N, IL)) → AND(isNatIList(IL), and(isNat(M), isNat(N)))
TAKE(s(M), cons(N, IL)) → ISNAT(M)
TAKE(s(M), cons(N, IL)) → AND(isNat(M), isNat(N))
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
TAKE(s(M), cons(N, IL)) → ISNAT(N)
ISNAT(length(V1)) → ISNATLIST(V1)
LENGTH(cons(N, L)) → ISNAT(N)
TAKE(s(M), cons(N, IL)) → U311(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
ISNATILIST(cons(V1, V2)) → ISNATILIST(V2)
ISNATILIST(V) → ISNATLIST(V)
ISNATLIST(take(V1, V2)) → ISNATILIST(V2)
TAKE(0, IL) → U211(isNatIList(IL))
LENGTH(cons(N, L)) → U111(and(isNatList(L), isNat(N)), L)
ISNATLIST(cons(V1, V2)) → ISNATLIST(V2)
LENGTH(cons(N, L)) → AND(isNatList(L), isNat(N))
TAKE(0, IL) → ISNATILIST(IL)
ISNAT(s(V1)) → ISNAT(V1)
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → ISNAT(V1)
U111(tt, L) → LENGTH(L)
ISNATLIST(take(V1, V2)) → AND(isNat(V1), isNatIList(V2))
U311(tt, IL, M, N) → TAKE(M, IL)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
ISNATLIST(take(V1, V2)) → ISNAT(V1)
ZEROS → ZEROS
TAKE(s(M), cons(N, IL)) → ISNATILIST(IL)
LENGTH(cons(N, L)) → ISNATLIST(L)
ISNATLIST(cons(V1, V2)) → AND(isNat(V1), isNatList(V2))
TAKE(s(M), cons(N, IL)) → AND(isNatIList(IL), and(isNat(M), isNat(N)))
TAKE(s(M), cons(N, IL)) → ISNAT(M)
TAKE(s(M), cons(N, IL)) → AND(isNat(M), isNat(N))
ISNATILIST(cons(V1, V2)) → AND(isNat(V1), isNatIList(V2))
TAKE(s(M), cons(N, IL)) → ISNAT(N)
ISNAT(length(V1)) → ISNATLIST(V1)
LENGTH(cons(N, L)) → ISNAT(N)
TAKE(s(M), cons(N, IL)) → U311(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
ISNATILIST(cons(V1, V2)) → ISNATILIST(V2)
ISNATILIST(V) → ISNATLIST(V)
ISNATLIST(take(V1, V2)) → ISNATILIST(V2)
TAKE(0, IL) → U211(isNatIList(IL))
LENGTH(cons(N, L)) → U111(and(isNatList(L), isNat(N)), L)
ISNATLIST(cons(V1, V2)) → ISNATLIST(V2)
LENGTH(cons(N, L)) → AND(isNatList(L), isNat(N))
TAKE(0, IL) → ISNATILIST(IL)
ISNAT(s(V1)) → ISNAT(V1)
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → ISNAT(V1)
U111(tt, L) → LENGTH(L)
ISNATLIST(take(V1, V2)) → AND(isNat(V1), isNatIList(V2))
U311(tt, IL, M, N) → TAKE(M, IL)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
↳ QDP
ISNATLIST(take(V1, V2)) → ISNAT(V1)
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNATLIST(cons(V1, V2)) → ISNATLIST(V2)
ISNATILIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNATILIST(cons(V1, V2)) → ISNATILIST(V2)
ISNATILIST(V) → ISNATLIST(V)
ISNATLIST(take(V1, V2)) → ISNATILIST(V2)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
↳ QDP
ISNATLIST(take(V1, V2)) → ISNAT(V1)
ISNATLIST(cons(V1, V2)) → ISNAT(V1)
ISNATLIST(cons(V1, V2)) → ISNATLIST(V2)
ISNATILIST(cons(V1, V2)) → ISNAT(V1)
ISNAT(length(V1)) → ISNATLIST(V1)
ISNAT(s(V1)) → ISNAT(V1)
ISNATILIST(cons(V1, V2)) → ISNATILIST(V2)
ISNATILIST(V) → ISNATLIST(V)
ISNATLIST(take(V1, V2)) → ISNATILIST(V2)
From the DPs we obtained the following set of size-change graphs:
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
↳ QDP
TAKE(s(M), cons(N, IL)) → U311(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
U311(tt, IL, M, N) → TAKE(M, IL)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
From the DPs we obtained the following set of size-change graphs:
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDPSizeChangeProof
↳ QDP
LENGTH(cons(N, L)) → U111(and(isNatList(L), isNat(N)), L)
U111(tt, L) → LENGTH(L)
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
From the DPs we obtained the following set of size-change graphs:
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
ZEROS → ZEROS
zeros → cons(0, zeros)
U11(tt, L) → s(length(L))
U21(tt) → nil
U31(tt, IL, M, N) → cons(N, take(M, IL))
and(tt, X) → X
isNat(0) → tt
isNat(length(V1)) → isNatList(V1)
isNat(s(V1)) → isNat(V1)
isNatIList(V) → isNatList(V)
isNatIList(zeros) → tt
isNatIList(cons(V1, V2)) → and(isNat(V1), isNatIList(V2))
isNatList(nil) → tt
isNatList(cons(V1, V2)) → and(isNat(V1), isNatList(V2))
isNatList(take(V1, V2)) → and(isNat(V1), isNatIList(V2))
length(nil) → 0
length(cons(N, L)) → U11(and(isNatList(L), isNat(N)), L)
take(0, IL) → U21(isNatIList(IL))
take(s(M), cons(N, IL)) → U31(and(isNatIList(IL), and(isNat(M), isNat(N))), IL, M, N)
↳ CSR
↳ CSDependencyPairsProof
↳ Incomplete Giesl Middeldorp-Transformation
↳ Trivial-Transformation
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
ZEROS → ZEROS